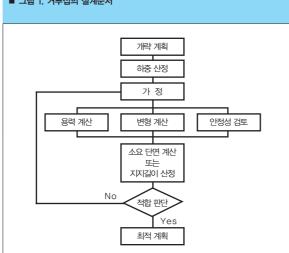
TROUBLE-SHOOTING *

건축공사 거푸집-동바리 설계

글 | 김성훈 기술개발부 대리 02-3433-7712 **이메일 |** madmax91@ssyenc.com **글 | 강지훈** 기술개발부 과장 02-3433-7729 **이메일 |** jhkang@ssyene.com 철근콘크리트 구조물 공사시 거푸집-동바리 시스템은 동 바리의 상하단이 거푸집 및 콘크리트 바닥에 완전히 고정 되지 않은 불완전한 상태에서 상부에 재하되는 하중을 지 지해야 하는 구조물로서 시공중 안전사고의 위험이 항상 도사리고 있기 때문에 합리적인 시공계획, 안전한 설계검 토, 자재의 올바른 선택 등을 통하여 공사중 발생할 수 있 는 안전사고를 사전에 방지하여야 할 것이다.

◀ 서류

철근콘크리트 구조물 공사시 거푸집·동바리 시스템은 동바리의 상하단이 거푸집 및 콘크리트 바닥에 완전히 고정되지 않은 불완전한 상태에서 상부에 재하되는 하중을 지지해야 하는 구조물로서 시공중 안전사고의 위험이 항상 도사리고 있기 때문에 합리적인 시공계획, 안전한 설계검토, 자재의 올바른 선택 등을 통하여공사중 발생할 수 있는 안전사고를 사전에 방지하여야 할 것이다. 최근 들어 대부분의 현장에서 가설구조물에 대한 구조계획을 검토하여 제출할 것을 요구하고 있는 실정이며, 이에 본고에서는 「가설공사 표준시방서」(건설교통부,2002년)를 바탕으로 하여「건축공사 표준시방서」,「건축공사 거푸집, 동바리 설계 및 시공지침」(1998년),「가설구조물의 해설」(일본) 등을 참조하여 거푸집 및 동바리의 구조검토 방법에 대하여 간략하게 살펴보고 실제 거푸집 및 동바리의 구조검토 방법에 대하여 간략하게 살펴보고 실제 거푸집 및 동바리의 구조검토 사례를 소개하고자 한다.


구조검토 과정

2-1. 일반사항

거푸집은 콘크리트를 소정의 형상으로 성형하는 과정에서 타설된 콘크리트가 설계된 형상과 치수를 유지하며 콘크리트가 소요 강 도에 도달할 때까지 양생 및 지지하는 구조물을 말하며, 동바리는 타설된 콘크리트가 소정의 강도를 얻기까지 고정하중 및 작업하 중 등을 지지하기 위하여 설치하는 부재를 일컫는다. 따라서 소정 의 형상을 얻을 때까지 발생할 수 있는 모든 종류의 허중을 부담할 수 있어야 할 뿐만 아니라 이동, 배부름, 붕괴 등의 변형이 발생하지 않도록 하여야 한다.

일반적으로 거푸집 및 동바리의 설계순서는 (그림1)과 같다.

■ 그림 1. 거푸집의 설계순서

2-2. 거푸집 설계에 있어서의 구조해석

1) 기본 원칙

- ① 거푸집 및 동바리의 구조검토는 탄성이론에 의하여 해석한다.
- ② 거푸집 및 동바리의 설계는 이론상 충분한 안전율을 적용하고 있는 허용응력설계법으로 한다.
- ③ 거푸집 및 동바리의 구조해석은 하중상태와 지지조건을 단순

화하고 근사적으로 해석하여 적용한다.

- 휨재에 작용하는 모든 하중은 등분포 하중으로 가정할 수 있다.
- 두개 스팬으로 구성된 휨재는 단순지지 휨재로 간주한다.

2) 설계하중

거푸집 및 동바리 계산은 콘크리트 시공시의 수직하중, 수평하중 및 콘크리트 측압에 대하여 검토하여야 한다. 여기서, 수직하중은 철근콘크리트와 거푸집의 무게를 합한 고정하중(일반적으로 거푸집 무게는 생략할 수 있다)과 공사중 발생하는 활하중(작업원, 경량의 장비하중, 기타 콘크리트 타설에 필요한 자재 및 공구 등의 시공하중 그리고 충격하중을 포함한다)을 포함한다.

3) 변형기준

거푸집 구조물의 변형계산은 단순지지보의 최대처짐식을 사용할수 있다. 폼타이, 강관 받침기둥 등의 인장재 및 압축재의 재축방향 변형은 무시할 수 있다.

■ 표 1. 거푸집의 변형기준

	변형기준	
거푸집 널 설계시	노출 콘크리트 및 견출 마감시	0.15cm
	미장 마감시	0.30cm
	강재갑판 사용시	1,50cm

4) 거푸집의 휨재

거푸집 휨재의 검토는 등분포 하중이 작용하는 단순보로서 휨, 처짐에 대한 검토를 한다.

5) 압축재의 검토

파이프 서포트(Pipe Support)를 설치할 경우 높이에 맞는 적절한 파이프 서포트를 사용하여야 하며, 다음과 같이 고려한다.

- ① 2.4m 이하인 경우에는 허용압축하중을 2,000kg으로 적용한다.
- ② 2.4m초과 3.5m 이하인 경우에는 한계세장비를 넘으므로 Euler식을 적용한다.
- ③ 3.5m를 초과할 경우에는 수평연결재를 2m 이내마다 설치하고, 기새를 설치하면 허용압축강도를 2,000kg로 할 수 있다. 이러한 일반사항이 있으나 산업안전공단에서는 〈표2〉와 같이 동바리 종류별 허용하중을 간단하게 표로 제시하고 있기 때문에 주로 이 표를 이용하고 있다.

■ 표 2. Pipe Support 종류별 허용하중(산업안전공단 허용치)

종 류	V-1	V-2	V-3	V-4	V-5
허용하중	1800kgf	1500kgf	1200kgf	1050kgf	750kgf

그러나, 지하주차장의 경우 지상층 슬래브가 공사용 중차량의 통행로가 되거나 자재 적재장소로 이용되는 등 하중이 높게 작용하기 때문에 파이프 서포트 외에 잭서포트(Jack Support)를 설치하는 것이 일반적이다.

🤦 거푸집-동바리 구조검토 방법

▶ 슬래브 거푸집 - 동바리 계산

- ① 하중은 고정하중, 충격하중(고정하중의 50%), 작업하중 (150kaf/m²)의 수직성분만을 고려한다.
- ② 거푸집널의 허용처짐량은 0.3cm 이하로 한다.
- ③ 거푸집, 장선, 멍에는 등분포하중이 작용하는 '단순 보'로 검토한다.
- ④ 동바리는 상부 부담면적에 대한 축력만을 부담하는 것으로 검토하다.

▶ 보 거푸집 - 동바리 계산

보거푸집 - 동바리 계산은 보밑판과 옆판 대해서 각각 검토한다.

- ① 하중은 보 밑판과 옆판의 경우를 나누어 고려한다.
- 보 밑판의 경우: 슬래브와 같이 고정하중, 충격하중, 작업 하중을 고려한다.
- 보 옆판의 경우: 최대측압은 고정하중만을 고려한다.
- ② 거푸집의 허용처짐량은 0.3cm 이하로 한다.
- ③ 거푸집널은 '단순보'로 검토하지만, 수평부재나 장선은 '단순 보'나 '연결보'로 검토하다.
- ④ 평타이는 거푸집널의 벌어짐에 대비한 인장력만을 검토한다.

56 건설기술 쌍용

거푸집-동바리 구조검토 사례

CASE 1. 아파트 기준층 슬래브 하부 거푸집-동바리 검토

- [기본자료] 보통 콘크리트: 2400 kg/m³ 작업하중: 150 kgf/m² ● 슬래브 두께: 15 cm ● 동바리 높이: 2.65 m

■ 슬래브 하부 구조검토

1) 하중계산

고정하중 = $2400 \times 0.15 = 360 \text{ kgf/m}^2$

충격하중 = 고정하중×50 % = 180 kgf/m²

 $= 150 \text{ kgf/m}^2$

 $=690 \text{ kgf/m}^2 = 0.069 \text{kgf/cm}^2$ ·: 검토하중

2) 부재검토

(I) **합 판**: 두께 12 mm 사용(장선 간격 계산)

단면이차 모멘트 I= 0.144cm⁴ 단면계수 z=0.24cm³

허용휨응력도 fb=260kgf/cm 탄성계수 E=55000kgf/cm

① 휨검토 - 단위폭 1cm 작용하중으로 계산

 $W = 0.069 \times 1 = 0.069 \text{kgf/cm}^2$

 $M_{max} = \frac{wl^2}{8} = \frac{0.069 \times 35^2}{8} = 10.6 \text{ kgf} \cdot \text{cm}$

 $\sigma_{\rm b} = M_{\rm max} = 10.6$

= 44 ⟨ 260 kgf/cm² ∴ O.k

② 처짐검토

 $\delta_{\text{max}} = \ \frac{5\text{wL}^4}{384\text{EI}} \ = \frac{5\times0.069\times35^4}{384\times55000\times0.144}$ = 0.17 ⟨ 0.30 cm ∴ O.k

(2) **장 선**: 각관 ロ50× 50× 2.3t 사용 (명에 간격 계산)

단면이차 모멘트 l=15.90cm⁴ 단면계수 z=6.34cm³

허용휨응력도 fb=2400kgf/cm 탄성계수 E=2100000kgf/cm

① 휨검토 - 장선 간격 35 cm 으로 작용하중 계산

 $W = 0.069 \times 35 = 2.42 \text{ kgf/cm}^2$

 $M_{\text{max}} = \quad \frac{|M|^2}{8} \ = \ \frac{2.42 \times 90^2}{8} = 2445.2 \ \mathrm{kgf} \cdot cm$

 $\sigma_b = \frac{Mmax}{max} = \frac{2445.2}{max}$

= 386 < 2400 kgf/cm² ∴ O.k

② 처짐검토

 $\delta_{\text{max}} = \frac{5WL^4}{384EI} = \frac{5 \times 2.42 \times 90^4}{384 \times 2100000 \times 15.90}$

 $= 0.06 \langle 0.30 \text{ cm} : 0.k \rangle$

(3) **멍에**: 목재 84×84 사용 (동바리 간격 계산)

단면이차 모멘트 |=414.90cm⁴ 단면계수 z=98.80cm³

① 휨검토 - 멍에 간격 90cm 으로 작용하중 계산

 $W = 0.069 \times 90 = 6.21 \text{kgf/cm}^2$

 $M_{max} = \frac{wl^2}{8} = \frac{6.21 \times 90^2}{8} = 6287.6 \text{kgf} \cdot \text{cm}$

 $\sigma_{\rm b} = \frac{\rm M_{max}}{\rm Z} = \frac{6287.6}{98.80}$

= 64 < 105kgf/cm² ∴ O.k

② 처짐검토

 $\delta_{\text{max}} = \ \frac{5WL^4}{384EI} \ = \ \frac{5 \times 6.21 \times 90^4}{384 \times 70000 \times 414.90}$ $= 0.18 \langle 0.30 \text{ cm} : 0.k$

(4) **동바리**: Pipe support V2 사용, 지지높이: 2.65m, 간격90cm

(1) 작용축하중(N) = (하중) × (부담면적)

 $=0.069 \times 90 \times 90 = 559 \langle 1500 \text{ kgf} : O.k$

[결과요약]

합 판: 12 mm 사용

장 선 : 각관 ロ50× 50× 2.3 @ 350mm

멍 에 : 목재 84 × 84 @ 900mm

동바리: Pipe support V2사용 900(멍에간격)×900mm 설치

CASE 2. 지하주차장 보하부 거푸집—동바리 검토

[기본자료] ● 보통 콘크리트: 2400 kg/m³ ● 작업하중: 150 kgf/m²

■ 보 밑판 구조검토

1) 밑판 하중계산

고정하중 = $2400 \times 0.90 = 2160 \text{ kgf/m}^2$

충격하중 = 고정하중×50 % = 1080 kgf/m²

 $= 150 \text{ kgf/m}^2$

·: 검토하중 $= 3390 \text{ kgf/m}^2 = 0.339 \text{kgf/cm}^2$

2) 밑판 부재검토

(I) **합판**: 두께 12 mm 사용(장선 간격 계산)

단면이차 모멘트 I=0.144cm⁴ 단면계수 z=0.24cm³

허용휨응력도 fb=260kgf/cm² 탄성계수 E=55000kgf/cm²

① 휨검토 - 단위폭 1cm 작용하중으로 계산

 $W = 0.339 \times 1 = 0.339 \text{kgf/cm}^2$

 $M_{\text{max}} = Wl^2 = 0.339 \times 27^2 = 30.9 \text{ kgf} \cdot \text{cm}$

 $\sigma_{\rm b} = \frac{\rm Mmax}{\rm 30.9}$

= 129 ⟨ 260 kgf/cm² ∴ O.k

② 처짐검토

$$\delta_{\text{max}} = \frac{5WL^4}{384\text{El}} = \frac{5 \times 0.339 \times 27^4}{384 \times 55000 \times 0.144} = 0.30 \langle 0.30 \text{ cm} : 0.\text{k}$$

(2) **장선**: 각관 ロ50 × 50 × 2.3t 사용 (멍에 간격 계산)

단면이차 모멘트 |=15.90cm⁴ 단면계수 z=6.34cm³

허용휨응력도 fb=2400kgf/cm 탄성계수 E=2100000kgf/cm

① 휨검토 - 장선 간격 27cm 으로 작용하중 계산

 $W = 0.339 \times 27 = 9.15 \text{kgf/cm}^2$

 $M_{max} = \frac{Wl^2}{2} = \frac{9.15 \times 90^2}{2} = 9264 \text{ kgf} \cdot \text{cm}$

 $\sigma_{\rm b} = \frac{\rm Mmax}{\rm = 9264}$ z 6.34

= 1462 < 2400 kg/cm² ∴ O.k

② 처짐검토

$$\delta_{\text{max}} = \frac{5WL^4}{384\text{El}} = \frac{5 \times 9.15 \times 90^4}{384 \times 2100000 \times 15.90} = 0.23 \langle 0.30 \text{ cm} \therefore 0.\text{k}$$

(3) **멍에**: 목재 84×84 사용 (동바리 간격 계산)

단면이차 모멘트 I=414.90cm⁴ 단면계수 z=98.80cm³ 허용휨응력도 fb=105kgf/cm 탄성계수 E=70000kgf/cm

① 휨검토 - 멍에 간격 90cm 작용하중 계산 . 동바리 2열지지

$$W = 0.339 \times 90 = 30.51 \text{ kgf/cm}^2$$

$$M_{ma \times} = \frac{Ml^2}{8} = \frac{30.51 \times 50^2}{8} = 9534 \text{ kg} \cdot \text{cm}$$

$$\sigma_{b} = \frac{M_{max}}{Z} = \frac{9534}{98.80}$$

= 97 < 105 kg/cm² ∴ O.k

② 처짐검토

$$\begin{split} \delta_{\text{max}} = & \ \, \frac{5WL^4}{384\text{EI}} = \frac{5 \times 30.51 \times 50^4}{384 \times 70000 \times 414.90} \\ & = 0.09 \, \langle \, 0.30 \, \text{cm} \ \, \dot{\sim} \, 0.k \end{split}$$

(4) **동바리**: Pipe support V4 (2열) 사용, 90 cm 간격

① 작용축하중(N)=(하중)×(부담면적)

=
$$\frac{0.339 \times 90 \times 50}{29}$$
 = 763(1,050 kgf ∴ 0.k

■ 보 옆판 구조검토

1) 옆판 하중계산

측압하중 = $2400 \times 0.90 = 2160 \text{ kgf/m}^2 = 0.216 \text{ kgf/cm}^2$

2) 옆판 부재검토

(I) 강제를 합판 거푸집 패널: 600mm×1200mm

(※강제틀 합판 거푸집의 성능과 기준은 KS F 8006에 따른다)

단면이차 모멘트 I=45.2cm⁴ 단면계수 z=11.7cm³

허용휨응력도 fb=3600kgf/cm² 탄성계수E=2000000kgf/cm²

① 휨검토 - 폭 120 cm 작용하중으로 계산

$$W = 0.216 \times 120 = 25.92 \text{ kgf/cm}^2$$

$$M_{\text{max}} = \frac{Wl^2}{8} = \frac{25.92 \times 60^2}{8} = 11664.0 \text{ kgf} \cdot \text{cm}$$

$$\sigma_{\rm b} = \frac{\rm M_{max}}{\rm Z} = \frac{11664.0}{11.7}$$

= 996.9 ⟨ 3600 kgf/cm² ∴ O.k

$$\delta_{\text{max}} = \frac{5WL^4}{384EI} = \frac{5 \times 25.92 \times 60^4}{384 \times 2000000 \times 45.2} = 0.05 \langle 0.30 \text{ cm} \therefore 0.k \rangle$$

(2) **평타이**: 19×4mm @ 1200 mm 가격으로 1개소 설치

(※ 평타이의 성능과 기준은 KS F 8006에 따른다. 단 설계시에

평타이내력 = 1600(설계응력)×1.5(단기)×0.52 = 1248 kg)

는 설계응력에 기초한 계산에 따르는 것으로 계산한다.)

(설계치 : As = $1.3(노치제외) \times 0.4 = 0.52cm^2$.

① 인장력 T = 0.216 kg/cm² × 45 cm × 120 cm

= $1166 \langle 1248 \text{ kg} : 0.\text{k}$

[결과요약]

(가) 보 밑판 자재 및 가격

합 판: 12 mm 사용

장 선: 각관 ロ50× 50× 2.3t @ 270 mm

멍 에 : 목재 84 × 84 @ 900 mm

동바리: Pipe support V4(2열)@ 900 mm 간격 설치

(나) 보 옆판 자재 및 가격

유로폼: 600 × 1200mm

평타이: 19 × 4mm @1200 mm 간격 설치

◎ 참고자료

1, 가설공사 표준 시방서, 건설교통부, 2002

2. 건축공사 표준시방서, 건설교통부, 1999

3, 콘크리트 공사 표준시방서, 건설교통부, 2003

4. 쌍용건설 기술연구소, 거푸집 설계 및 시공 표준안, 1994.2

5. 대한건설협회, 건축공사 거푸집 동바리 설계 및 시공 지침, 1998.11 6. 신성우 외 4인, 철근 콘크리트 구조설계물의 거푸집 존치기간 단축에 따른 경제성 평가. 대하거축학회학숙박표노무진 2004.4

58 건설기술 W용